Transformation and normalization of oligonucleotide microarray data
نویسندگان
چکیده
MOTIVATION Most methods of analyzing microarray data or doing power calculations have an underlying assumption of constant variance across all levels of gene expression. The most common transformation, the logarithm, results in data that have constant variance at high levels but not at low levels. Rocke and Durbin showed that data from spotted arrays fit a two-component model and Durbin, Hardin, Hawkins, and Rocke, Huber et al. and Munson provided a transformation that stabilizes the variance as well as symmetrizes and normalizes the error structure. We wish to evaluate the applicability of this transformation to the error structure of GeneChip microarrays. RESULTS We demonstrate in an example study a simple way to use the two-component model of Rocke and Durbin and the data transformation of Durbin, Hardin, Hawkins and Rocke, Huber et al. and Munson on Affymetrix GeneChip data. In addition we provide a method for normalization of Affymetrix GeneChips simultaneous with the determination of the transformation, producing a data set without chip or slide effects but with constant variance and with symmetric errors. This transformation/normalization process can be thought of as a machine calibration in that it requires a few biologically constant replicates of one sample to determine the constant needed to specify the transformation and normalize. It is hypothesized that this constant needs to be found only once for a given technology in a lab, perhaps with periodic updates. It does not require extensive replication in each study. Furthermore, the variance of the transformed pilot data can be used to do power calculations using standard power analysis programs. AVAILABILITY SPLUS code for the transformation/normalization for four replicates is available from the first author upon request. A program written in C is available from the last author.
منابع مشابه
Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities.
High-density functional gene arrays have become a powerful tool for environmental microbial detection and characterization. However, microarray data normalization and comparison for this type of microarray remain a challenge in environmental microbiology studies because some commonly used normalization methods (e.g., genomic DNA) for the study of pure cultures are not applicable. In this study,...
متن کاملتحلیل تصاویر ریزآرایه به منظور تشخیص نوع سرطان سینه
Background: Microarray technology is a powerful tool to study and analyze the behavior of thousands of genes simultaneously. Images of microarray have an important role in the detection and treatment of diseases. The aim of this study is to provide an automatic method for the extraction and analysis of microarray images to detect cancerous diseases. Methods: The proposed system consists of t...
متن کاملتحلیل تصاویر ریزآرایه به منظور تشخیص نوع سرطان سینه
Background: Microarray technology is a powerful tool to study and analyze the behavior of thousands of genes simultaneously. Images of microarray have an important role in the detection and treatment of diseases. The aim of this study is to provide an automatic method for the extraction and analysis of microarray images to detect cancerous diseases. Methods: The proposed system consists of t...
متن کاملEnhanced quantile normalization of microarray data to reduce loss of information in gene expression profiles.
In microarray experiments, removal of systematic variations resulting from array preparation or sample hybridization conditions is crucial to ensure sensible results from the ensuing data analysis. For example, quantile normalization is routinely used in the treatment of both oligonucleotide and cDNA microarray data, even though there might be some loss of information in the normalization proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 19 14 شماره
صفحات -
تاریخ انتشار 2003